

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Infrared Spectra of Metal (II) Complexes of 1, 3, 4-Thiadiazole-2, 5-Dithiol, 5-Amino-L, 2, 4-Dithiazol-3-Thione and Their Acetyl Derivatives

P. A. Ortega^a; L. R. Vera^a; M. Campos-Vallette^b; G. Diaz Fleming^c

^a Facul. tad de Ciencias. Depto. de Química, Universidad Católica del Norte, Casilla, Chile ^b Facultad. de Ciencias. Depto. de Química, Universidad de Chile, Casilla, Chile ^c Facultad de Ciencias. Depto. de Química, Universidad de Playa Ancha, Casilla, Chile

To cite this Article Ortega, P. A. , Vera, L. R. , Campos-Vallette, M. and Fleming, G. Diaz(1996) 'Infrared Spectra of Metal (II) Complexes of 1, 3, 4-Thiadiazole-2, 5-Dithiol, 5-Amino-L, 2, 4-Dithiazol-3-Thione and Their Acetyl Derivatives', Spectroscopy Letters, 29: 3, 477 — 496

To link to this Article: DOI: 10.1080/00387019608006665

URL: <http://dx.doi.org/10.1080/00387019608006665>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**INFRARED SPECTRA OF METAL (II) COMPLEXES OF
1,3,4-THIADIAZOLE-2,5-DITHIOL,
5-AMINO-1,2,4-DITHIAZOL-3-THIONE AND THEIR ACETYL
DERIVATIVES**

Key words: 1,3,4-thiadiazole-2,5-dithiol, 5-amino-1,2,4-dithiazol-3-thione, bismuthiol, xanthane, infrared band assignment, tautomerism, complex structure.

P.A.Ortega and L.R.Vera
Universidad Católica del Norte, Facultad de Ciencias. Depto.de
Química. Casilla 1280 Antofagasta Chile.

M. Campos-Vallette
Universidad de Chile, Facultad de Ciencias. Depto. de Química,
Casilla 653 Santiago Chile.

G. Diaz Fleming
Universidad de Playa Ancha, Facultad de Ciencias. Depto. de
Química. Casilla 34-V Valparaiso Chile.

ABSTRACT

An infrared spectral interpretation of the structure of fifteen solid complexes formed by Co(II), Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) with ligands 1,3,4-thiadiazole-2,5-dithiol (bismuthiol), 5-amino-1,2,4-dithiazolin-3-thione (xanthane) and the 2-acetyl-1,3,4-thiadiazol-5-thione and 5-acetyl amide-1,2,4-dithiazol-3-thione derivatives is performed. The coexistence of different tautomers of bismuthiol and xanthane in the solid state is proposed. The bismuthiol-metal complexes display a unique and similar polymeric structure involving one tautomer. The xanthane-

metal complexation stabilizes the 1,1-dithiolate-type polymeric species; complexation with Cd, Co and Hg metal ions also stabilizes polymers involving the perthiocyanic tautomer.

INTRODUCTION

Ligands 1,3,4-thiadiazole-2,5-dithiol (bismuthiol) and 5-amino-1,2,4-dithiazol-3-thione (xanthane) are known to react with heavy metals to form polymers [1-3] which are not soluble in current solvents. This characteristic makes bismuthiol and xanthane good candidates for the treatment of polluted water. However, the physical nature of the polymers makes x-ray structural determination and the interpretation of the ^{13}C - and ^{15}N -NMR spectra very difficult. On the other hand, both bismuthiol and xanthane are normally present in solution in at least three and four tautomeric forms, respectively [4,5]. See Fig. 1. Thus, vibrational spectroscopy is an alternative to infer about the molecular structure. The aim of this paper is to give some insights about the structure of the bismuthiol (B) and xanthane (X) metal (II) complexes, by using infrared data. Bivalent metal ions here considered are Cd, Cu, Co, Hg, Pb and Zn. We have also included in this study the acetyl derivative in position 2 of bismuthiol (AB) and xanthane (AX) (see Fig. 2) in order to investigate the effect that this substitution has on the molecular structure of the corresponding metal complexes.

EXPERIMENTAL

Synthesis

Analytical reagent bismuthiol (B) and metal salts were furnished by Aldrich. Xanthane (X) was synthesized following described procedures [3].

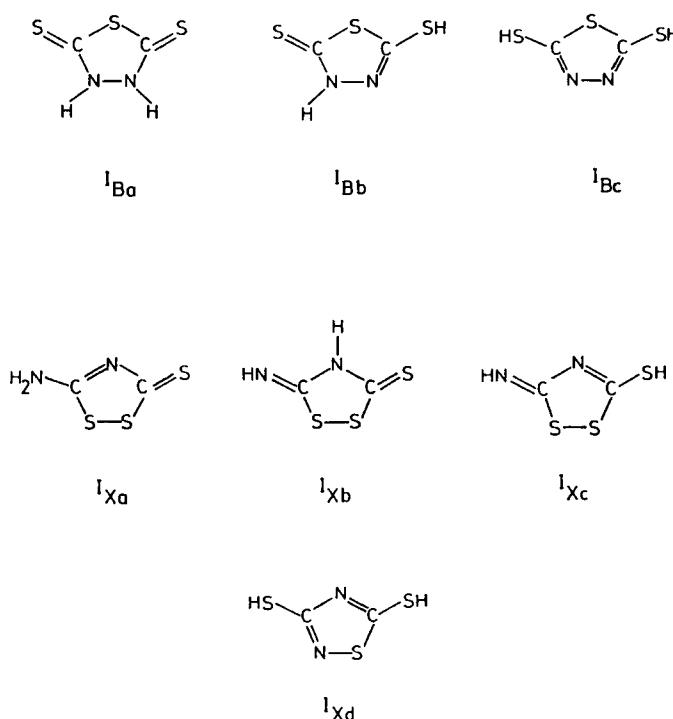


Fig.1. Tautomers of bismuthiol (I_B) and xanthane (I_X).

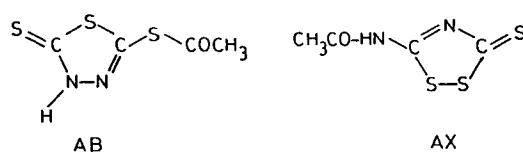


Fig.2. 2-acetyl-1,3,4-thiadiazol-5-thione (AB) and 5-acetylthiopyrimidine (AX).

Metal complexation of B and X. Equal volumes of equimolar solutions of metal chlorides and ligands were mixed. Resulting materials are amorphous solids not soluble in common solvents or water.

2-aminoacetyl derivative of bismuthiol (AB). 1.5 g of B (0.01 mol) and 20 ml of diethylether were mixed. Then, 0.79 g (0.01 mol) of freshly distilled acetyl chloride were slowly added; the mixture was stirred and refluxed during 15 minutes and then cooled on ice. A beige material was obtained.

5-acetylamide-1,2,4-dithiazol-3-thione (AX). 1 g of X, 20 ml of acetic anhydride and 20 ml of glacial acetic acid were mixed. The reaction mixture was heated at 60°C with stirring for two and half hour. Then, 10 ml of both acetic anhydride and acetic acid were added and the reaction was allowed to reflux for 30 minutes. The mixture was added to cold water and the yellow-orange precipitate was collected by filtration, washed with water and dried in a desiccator.

AB and AX metal complexes (ABM and AXM). Equal volumes of equimolar solutions of AB and AX and metal chloride were mixed. Amorphous solids not soluble in common solvents or water were obtained. Sulphur and S species were not detected during the metal complexation.

Before measurements ligands were recrystallized from ethanol; the metal complexes were washed with ethanol at 40 degrees Celsius and then washed with cold water.

Stoichiometry and colours of the BM, ABM and XM complexes is given in Table 1.

Vibrational measurements

FTIR spectra of anhydrous ligands and complexes were registered by using a Bruker IFS66V interferometer. KBr and polyethylene

TABLE 1.

Stoichiometry of the bismuthiol, acetyl-bismuthiol and xanthane metal complexes. L, ligands; M, metal ions.

L/M	Co	Cu	Cd	Hg	Pb	Zn
B	1/1	1/1	1/1	1/1	1/1	-
	Pink	Brown	Yellow	Yellow	Yellow	-
AB	1/1	1/1	1/1	1/1	1/1	-
	Pink	Brown	Yellow	Yellow	Yellow	-
X	-	1/1	1/1	1/1	1/1	1/1
	-	Brown	Green	Yellow	Yellow	White
AX	-	2/1	2/1	2/1	2/1	2/1

disks were used in the middle and far spectral regions, respectively.

Spectra of B, AB, X and AX in the regions 4000-400 cm^{-1} and 400-120 cm^{-1} are displayed in Figs. 3 and 4, respectively. Typical spectra of complexes BM, XM and AXM are shown in Figs. 5 and 6.

For the ligands routine FT-Raman spectra were obtained with a Perkin-Elmer series 2000 apparatus; no different frequencies were observed in comparison with the FT-IR spectra. Due to thermal defects it was not possible to obtain the Raman spectra of complexes.

RESULTS AND DISCUSSION

Bands assignment. The spectral assignment of bands belonging to ligands and complexes is proposed on the basis of data reported for related systems [3-15], and in terms of characteristic group frequencies [16]. The molecular vibrations of the present molecules, will probably not be pure, with coupling to other modes of vibration generally being expected. Thus, when describing the vibration with various degrees of purity we mean that in assigning a band to a particular mode, we infer that the

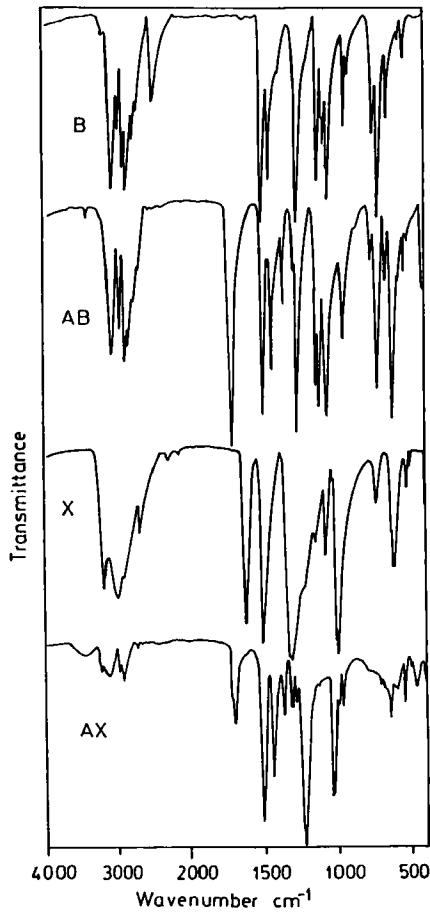


Fig.3. Infrared spectrum of bismuthiol (B), 2-acetyl-1,3,4-thiadiazol-5-thione (AB), xanthane (X) and 5-acetylamide-1,2,4-dithiazol-3-thione (AX) in the region $4000-400\text{ cm}^{-1}$.

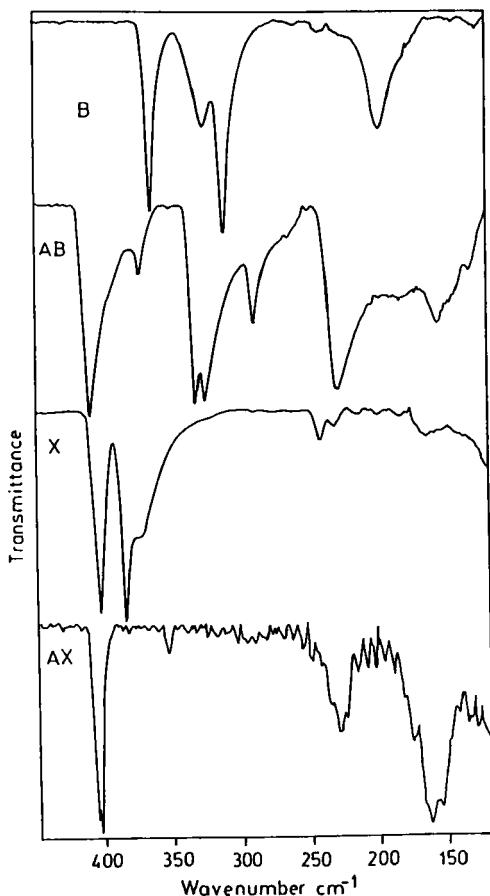


Fig.4. Infrared spectrum of bismuthiol (B), 2-acetyl-1,3,4-thiadiazol-5-thione (AB), xanthane (X) and 5-acetylamide-1,2,4-dithiazol-3-thione (AX) in the region $400-120 \text{ cm}^{-1}$.

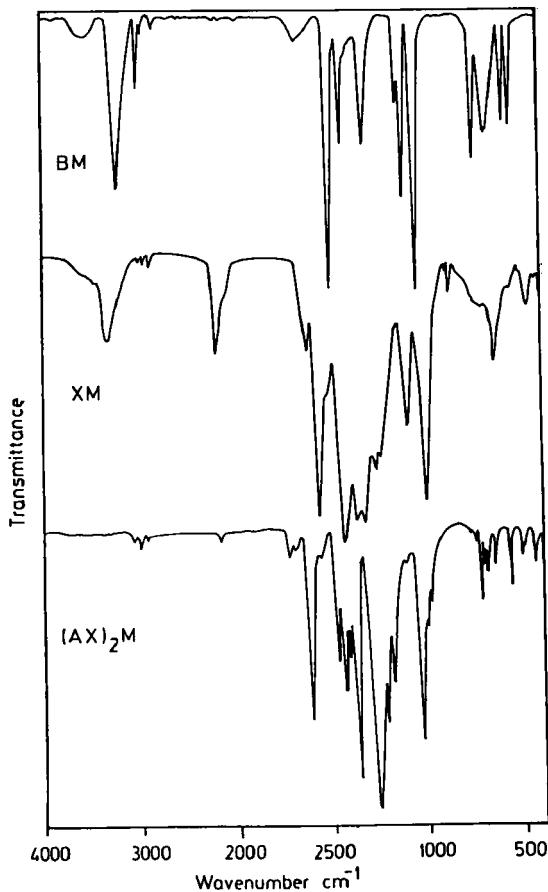


Fig.5. Typical infrared spectrum of metal complexes of bismuthiol BM ($\text{B}=\text{I}_{\text{Bc}}$, $\text{M}=\text{Zn}$), xanthane XM ($\text{X}=\text{I}_{\text{xd}}$, $\text{M}=\text{Cd}$) and 5-acetylamide-1,2,4-dithiazol-3-thione $(\text{AX})_2\text{M}$ ($\text{M}=\text{Hg}$) in the region $4000-400 \text{ cm}^{-1}$.

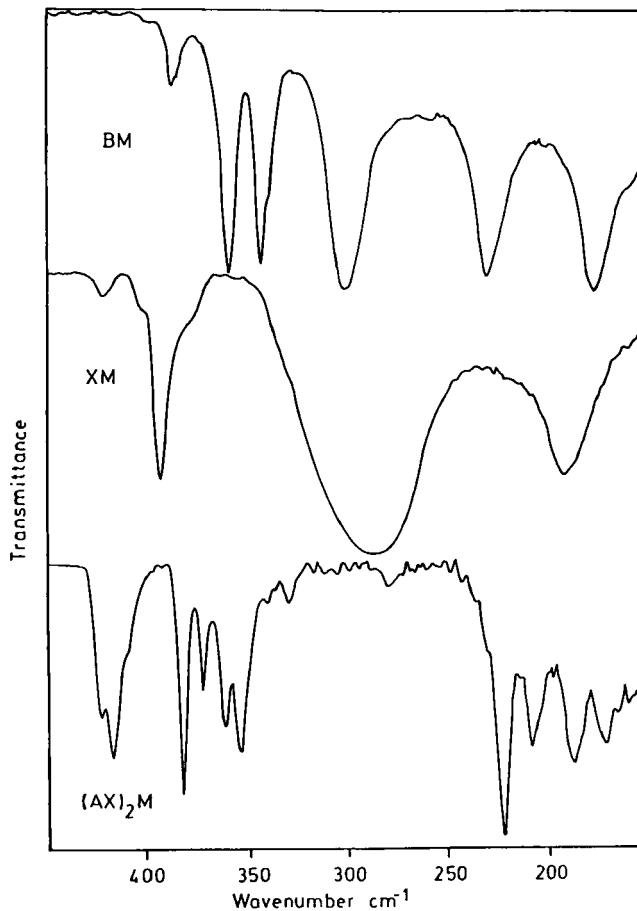


Fig.6. Typical infrared spectrum of metal complexes of bismuthiol BM ($\text{B}=\text{I}_{\text{Bc}}$, $\text{M}=\text{Zn}$), xanthane XM ($\text{X}=\text{I}_{\text{xd}}$, $\text{M}=\text{Cd}$) and 5-acetylamide-1,2,4-dithiazol-3-thione $(\text{AX})_2\text{M}$ ($\text{M}=\text{Hg}$) in the region $400\text{--}120\text{ cm}^{-1}$.

Table 2. Infrared bands assignment of bismuthiol (B), 2-acetyl-1,3,4-thiadiazol-5-thione (AB) and bismuthiol metal complexes.

B	AB	CuB	ZnB	CdB	HgB	PbB	Assignment
2920 mm _s		3453 bm 3155 bm	3516 bw 3154 ms	3500 bvw 3177 m	3474 bw 3148 mb	3470 bw 3031 m	νOH (H ₂ O) νNH
	2965 mm. 2850 vw	2918 vw 2882 vw	2836 w 2855 dwv	2930 w 2873 m			νNH + νCH + overtones
2478 m	1709 s		1629 bw	1641 bw	1641 bvw	1630 wb	νSH νCO δOH (H ₂ O)
1505 s	1499 ms	1510 vw					νCN
1452 ms	1437 m	1468 mst. 1408 md	1480 s 1412 m	1475 s 1419 m	1467 ms 1411 dm	1465 ms 1384 ms	δCH ₃ ring
	1353 m 1289 sh		1301 m	1298 bm	1272 msb	1284 ms	δNH
1265 s	1268 s	1259 w 1259 m					νC=S νCS exo- ring
1122 ms 1076 md	1133 m 1106 msd	1121 dm 1105 ms	1124 ms 1099 m	1117 m	1105 dms	1113 w 1113 ms	νCN + νCH ₃ ring
1050 msd 941 m 918 w	1060 msd 954 bm	1045 sm.	1038 sd	1041 sd	1038 sd	1050 s	νC=S νCS ring
751 mb 715 s 658 m	765 w 720 msb 658 w 658 w	723 ms 659 vw	735 m 667 mb	731 m 638 mb	718 m 638 ms	762 w 721 ms 654 w	δCH ₃ νNCS
	622 s						δCO νCCO
575 vw 534 wd	585 vw 536 w	570 vw 536 wmd	582 m 544 m	577 w 544 wd	580 w 545 wd	587 w 544 w	δNCS νNCS
	500 vw 408 s						δCO νCCO
371 ms	371 w	389 vw 347 wd	385 w 357 s	381 m 352 s	385 msd 353 s	387 md 370 m	ring def. + νM-OH ₂ νMS
336 wb 324 s	331 ms 324 ms		342 msd	333 ms	330 mw	317 ms	ring def. ring def.
			300 sb	291 sb 260 w	267 s 255 vwd	254 sh	νMS acet. def.
220 m 156 vw	289 m 229 ms 156 m	177 vw	230 msb 175 msb	206 mb 162 wb	240 m 171 m	237 bms 162 msb	δSC ring def.?

Relative intensity: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; b, broad; m., multiple; d, double; t., triple; sh, shoulder (irrespective of their strength).

band originates mainly from that mode but understand that the vibrations are likely to contribute to the vibrational energy. The proposed assignment is given in Tables 2-4.

B and AB ligands.

Six bands between 3150 and 2650 cm⁻¹ and the asymmetric broad absorption in the spectrum of ligand B at 1265 cm⁻¹ are assigned

Table 3. Infrared bands assignment of xanthane (X) and xanthane metal complexes.

X	CuX	CdX	CoX	HgX	PbX	Assignment
3207 ms	3260 bw	3278 mb	3338 sb	3426 msb		$\nu\text{OH}(\text{H}_2\text{O}) + \nu\text{NH}$
3021 msb				3242 w		νNH
2697 w	2875 wd		2750 wd	2900 wd		$\nu\text{CH} + \nu\text{NH}$
		2185 m	2217 m	2250 w.m.	2157 m	2156 ms νCN
1629 s	1614 mb	1610 w.m.	1555 m	1551 s	1614 msb	$\text{NH}_2 + \delta\text{OH}(\text{H}_2\text{O})$
1516 s	1500 w	1500 vw	1421 s	1412 bsd	1502 w	1526 msb
1450 sh			1412 s	1414 wb		$\nu\text{CN} + \delta\text{NH}$
1384 s		1360 s	1384 s		1386 s	
1314 vsm.	1350 s	1313 s	1330 m	1343 sd	1341 s	
1230 sh	1238 w	1250 wd		1247 s		
1150 sh	1110 mb			1106 mw	1125 vw	δNH_2
1083 mw				1088 ms		pNH_2
1016 s				1020 md	1038 m	$\nu\text{CS exo-}$
1003 s	992 mb	987 s		985 m	963 w	$-\text{ring} + \nu\text{CS ring}$
960 sh				750 wb		
747 mb						
			868 w	885 wd	843 w	$\nu\text{NS} + \nu\text{CS ring}$
				679 ms	663 m	
640						
627 mt.	617 m	632 m	619 dw	618 w.m.	620 vvv	$\nu\text{CS} + \delta\text{NH}$
619						
534 w	523 sh	534 vw	520 bvv	536 vvv	534 vw	νSS
505 vw		502 vvv		505 vvv	512 vw	νSS
			457 bm		457 vw	$\delta\text{CNC} + \nu\text{SS}$
408 s			419 vw			
390 s	386 wb	387 m	387 vw		388 wb	$\nu\text{MS} + \nu\text{M-OH}_2 + \text{ring def.}$
380 mw						
				325 wb	351 sb	νMS
262 w		271 sb			340 wb	$\nu\text{MS} + \nu\text{CCN} + \text{ring def.}$
250 w				252 sb		
				210 vw		

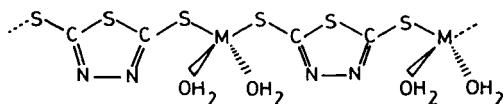
Relative intensity: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; b, broad; m., multiple; d, double; t., triple; sh, shoulder (irrespective of their strength).

to different NH stretching (νNH) and deformation (δNH) modes, respectively [15]; see Fig. 3 and Table 2. The asymmetric band at 2478 cm^{-1} is readily assigned to νSH [3,4], while the double band at 1050 cm^{-1} is characteristic of $\nu\text{C=S}$ [14]. The broad and asymmetric absorptions at 1505 and 1452 cm^{-1} are due to νCN modes [3,4]. The double absorption with maxima at 941 and 918 cm^{-1} , and the broad bands at 751 , 715 and 658 cm^{-1} are assigned to stretching vibrations of different CS single bonds [7,17-19]; the

Table 4. Infrared bands assignment of 5-acetylamide-1,2,4-dithiazol-3-thione (AX) and 5-acetylamide-1,2,4-dithiazol-3-thione metal complexes.

AX	Cu(AX) ₂	Cd(AX) ₂	Co(AX) ₂	Hg(AX) ₂	Pb(AX) ₂	Assignment
3500 mb		3339 mb				vOH(H ₂ O) cryst.
3213 w						vNH
3111 bw						vNH
2986 w				3000 wt.		vCH
2920 bw	2918 wt.	2919 wt.				vCH
1692 dm						vCO
	1578 w	1597 sd	1552 vsb	1591 s	1597 msb	vCC+ vCN
1509 s	1513 mb				1512 s	vCC+ vCN
				1450 m		
1440 ms	1421 sm.	1440 sd	1421 st.	1412 ms	1420 sb	vCN
				1392 m		
1368 wmm	1368 m	1354 s	1331 sh	1354 s	1351 ms	δCH ₃
1312 wmm						δNH + vCN
1274 w						δCH ₃
1235 s	1250 sh	1262 s	1259 sh	1253 s	1250 vsm.	δNH + vCN
1217 s	1230 s			1216 dm	1204 m	δCH ₃ +δCNC+ +vCO
1022 msd	1031 s	1025 s	1027 s	1014 s	1025 s	vC=S + vCS
961 w			960 vw		965 m	vCS
			884 w			vNS + vCS
					789 wb	vNS + vCS
640 wmm	705 w	694 m	678 ms	688 m	689 m	
666 wd	667 m			658 m	666 m	vCS+ CH ₃ def+
627 vvw			617 w	617 m	640 m	+NH def.
						vC-CH ₃
540 wmm	541 w	543 mb	539 w	540 wmm	539 ms	vSS
457 mb	462 wb	470 wb	458 wb	477 wd	467 wb	vSS
424 m	421 ms					δCNC +vSS
404 sd	404 md	412 ms	405 vw	415 msd	405 md	ring def.+ +vSS
	362 vw	368 ms		376 s		vSS
		356 ms		364 m	361 m	
353 vw				353 m	340 m	vMO + vMN
				345 ms		
				318 vw		
	286 m					
	270 sh					
230 vw	217 m	244 mb	250 sb	262 vvw	240 mb	vMN + +ring def. + <i>t</i> (acetyl)
	192 m	200 vw		201 s		?
164 vw	160 mb	171 m.		159 m	163 mb	chelate ring ?
		155 vw		142 w		?

Relative intensity: vs, very strong; s, strong; m, medium; w, weak; vw, very weak; b, broad; m., multiplet; d, double; t., triple; sh, shoulder (irrespective of their strength).


two highest frequencies evidence certain degree of conjugation. These results suggest the coexistence of tautomers I_{B_a} , I_{B_b} and I_{B_c} ; see Fig. 1. Vibrations at 575, 534, 371, 336, and 324 cm^{-1} are attributable to ring deformations [6,10,16]. Formation of the acetyl derivative AB is evidenced by the appearance of the strong vCO band at 1709 cm^{-1} . The absorptions

at 1353 and 622 cm^{-1} , are assigned to deformations of CH_3 ; the $\delta_{\text{asym.}}\text{CH}_3$ is probably masked by the strong νCN band at 1437 cm^{-1} . Other new bands at about 500 cm^{-1} and those at 408 and 289 cm^{-1} (see Figs. 3 and 4) are attributed to deformation modes of the acetyl fragment [16]. Substitution of the mercapto-hydrogen is evidenced by the disappearance of the νSH mode, near 2478 cm^{-1} . The spectra indicate that the acetyl substitution does not involve the C=S bond. The energy increasing by acetylation (954 cm^{-1}) of the double band at about 930 cm^{-1} , is due to an energy redistribution on the CS bonds.

The rest of the spectrum being quite similar to that of B, suggests that species I_{Rn} coexists with AB. There is no spectral evidences to confirm or discard a double acetylation of tautomer I_{Rc} .

BM and ABM complexes.

Spectra of BM and ABM resulted identical; no bands associated to the acetyl group are now present, which is an evidence that CH_3CO^- is hydrogen substituted during the metal complexation (see Figs. 5 and 6 and Table 2 for the BM spectra and assignment). The broad band at about 3500 cm^{-1} is assigned to the νOH mode of coordination water; the δOH vibration could be associated to one of the components of the asymmetric band near 1620 cm^{-1} . A medium strong broad band at about 390 cm^{-1} could contains the metal-water coordination absorption. Metal-ligand bonding is evidenced by both the disappearance of the νSH and νCS_{ex} modes, and the presence of new bands at 352 and near 265 cm^{-1} ascribed to $\nu\text{M-S}$ stretching vibrations [11,13,16,20,21]. Complexation is also accompanied by the spectral shift to lower frequency of the νCN modes (1505 to 1420 cm^{-1}). Bands of ligand B at 941 and 918 cm^{-1} are absent in the spectrum of complexes; this strongly suggests

I

Fig.7. Structure I. Proposed polymeric structure for the I_{Bc} bismuthiol metal complexes BM.

that these absorptions are attributable to the exo-ring ν CS modes. B bands at 1122, 1076, 371, 220 and 156 cm^{-1} resulted sensitive to metal-complexation; thus, the spectral shifting is attributable to ring structural modifications. This set of results suggest that the metal complexation could involve both tautomers I_{Bb} and I_{Bc} . Bands in the spectra of complexes, in particular those at about 3150 cm^{-1} (ν NH) and 1040 cm^{-1} (ν C=S), suggest the presence of the free tautomer I_{Bb} coexisting with the metal complex; this is corroborated by our Job's experiments [21] which indicate that ligands are partially adsorbed on the complex surface when solutions of free ligand are used to obtain complexes. The spectral features and physical-chemical characteristics of the metal complexes (vide supra) allow us to propose a polymeric structure for the BM complexes involving only the I_{Bc} tautomer. See Fig.7.

X and AX ligands.

The IR spectrum of xanthane shows bands characteristics of NH (around 3250 cm^{-1}) and NH₂ (1629, 1314, 1083, 747 and 620 cm^{-1}) [4,13] (see Figs.3 and 4 and Tables 3 and 4); this suggest that tautomers I_{Xa} and I_{Xb} coexist in the solid samples, see Fig.1. The fact that no band was observed about 2480 cm^{-1} (ν SH) confirms the absence of tautomers I_{Xc} and I_{Xd} . The strong and broad

band at 1516 cm^{-1} is assigned to a $\nu\text{C}=\text{N}$ mode; its shoulder at about 1450 cm^{-1} and the absorption at 1230 cm^{-1} are assigned to coupled νCN vibrations [7]. The C=S bond is inferred at 1003 cm^{-1} ; the $\nu\text{C-S}$ modes, strongly coupled to NH deformations, are attributable to some of the bands at about 747 and 620 cm^{-1} . Sharp bands at 536 and 507 cm^{-1} are ascribed to ring vibrations involving the S-S bond [8,15,20,22]. Absorptions at 408, near 390 and 262 cm^{-1} are consistent with ring vibrations [6,10,16]. The X-aminoacetylation (AX) should be recognizable by the disappearance of bands assigned to the NH₂ group (see Figs. 3 and 4, and Tables 3 and 4); in fact, the groups of bands around 3000, 1314, 747 and 620 cm^{-1} are simplified, while bands at 1629 cm^{-1} (δNH_2) and 1083 cm^{-1} (ρNH_2) are now absent. The new broad band at 457 cm^{-1} is attributed to an exo-ring CNC deformation [16]. Other bands of the acetyl group are observed at 1692 cm^{-1} (νCO), 2986 and 2920 cm^{-1} (νCH), 1368 cm^{-1} (δCH_3) and near 592 cm^{-1} ($\nu\text{C-CH}_3$). With the present experimental data we can not explain the disappearance by acetylation of the ring deformation band at about 390 cm^{-1} . Vibrations at about 229 and 164 cm^{-1} are tentatively assigned to acetyl framework torsions [23]. The spectral characteristics of the AX compound suggests that tautomer I_{x,a} is mainly involved in the acetylation. The fact that several bands of X still remain in the AX spectrum allow us to infer that tautomer I_{x,b} coexists with the I_{x,a} aminoacetylated tautomer.

XM complex formation.

The broad band at about 3400 cm^{-1} is ascribed to the νOH mode of coordination water; the asymmetric band at about 1620 cm^{-1} should contain the OH deformation mode. The metal-water coordination

stretching mode could be assigned to one of the bands in the region 390 cm^{-1} . Three different CN bonds can be inferred; the multiple band at 2171 cm^{-1} is assigned to a $\nu\text{C}\equiv\text{N}$ mode [7], and the broad bands at 1551 and 1421 cm^{-1} are ascribed to stretching vibrations of the C=N and C-N bonds, respectively. Absorptions at 868 and near 750 cm^{-1} are characteristics of a νCS mode of an ionic 1,1-dithiolate group [16,24]. The band at 457 cm^{-1} is a δCNC mode while those near 350 and 271 cm^{-1} are certainly M-S stretching vibrations [11,15,19] (see Table 3).

Several bands remain at about the same frequency that in the spectrum of X but, in general, they display a low relative intensity: the group of bands at about 3000 cm^{-1} (νNH) is simplified and the bands near 1610 (δNH_2), 1510 ($\nu\text{C}=\text{N}$), 1330 (νCN), 1083 (ρNH_2), 990 ($\nu\text{C}=\text{S}$), 750 (ωNH_2), 632 (δNH coupled to νCS), 530, 505 cm^{-1} (νSS) and 387 cm^{-1} (ring vibration), still remain. This situation suggests that a small quantity of the unreacted $\text{I}_{\text{x},\text{a}}$ tautomer coexists with the metallic complex. The bands at about 885, 679 and 210 cm^{-1} , observed mainly in the spectrum of the cobalt complex, are ascribed to ring vibrations involving the N-S and C-S ring bonds [10]; this suggests that tautomer $\text{I}_{\text{x},\text{d}}$ (perthiocyanic acid) could also be stabilized in the processus of the xanthane metal complex formation; the corresponding metal-ligand stretching modes could be inferred from the broadness of the bands near 340 and 250 cm^{-1} in the spectrum of CoX , HgX and PbX .

Other very weak bands between 3000 and 2800 cm^{-1} (νCH), near 1368 cm^{-1} (δCH_2) and one shoulder about 2100 cm^{-1} ($\nu\text{C}\equiv\text{N}$), belong to the residual CH_3CN solvent used in the synthesis of the complexes. Thus, the most probable species involved in the XM formation are tautomer $\text{I}_{\text{x},\text{a}}$ and the 1,1-dithiolate-type and $\text{I}_{\text{x},\text{a}}$ complexes, see Fig. 8.

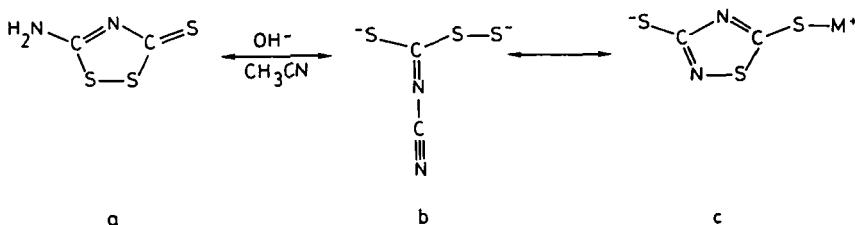


Fig.8. Most probable species in the xanthane-metal complexation. a: tautomer I_{xa}, b: 1,1-dithiolate-type metal complex and c: I_{xa} metal complex.

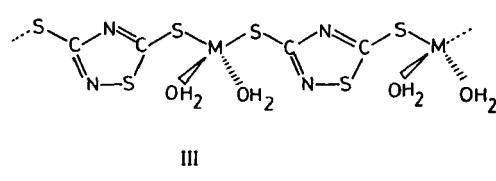
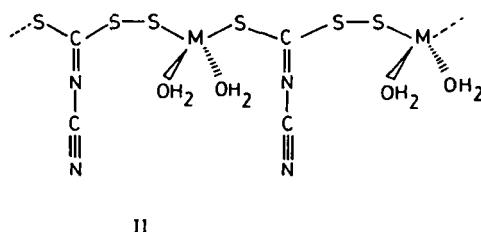



Fig.9. Structure II: proposed polymeric structure for the 1,1-dithiolate-type metal complexes. Structure III: proposed polymeric structures for the I_{xa} xanthane metal complexes XM.

The spectral characteristics of the XM complexes and their physical-chemical properties are consistent with a polymeric structure for both metal dithiolate-type and I_{xa} compounds (see Fig.9).

AXM complex formation

The metal complexation involves the CO group of the acetyl anion and the NH₂ group of tautomer I_{xa}. This is supported by the fact

that the ν_{NH} and $\nu_{\text{C=O}}$ modes are not observed in the IR spectrum of the AXM complexes; other bands appearing at 1417 cm^{-1} and between 1250 and 1160 cm^{-1} are due to a single CO bond [9] (see Table 4). Moreover, the new bands near 1590 and 477 cm^{-1} are related to the ring [25] and aminoacetyl [16] moieties, respectively; the bands observed only in the spectrum of complexes near 420 , 380 and 270 cm^{-1} are attributable to $\nu_{\text{M-O}}$ [7,11], $\nu_{\text{M-N}}$ [11] and chelate vibrations [11,26,27], respectively. The fact that the C=S stretching mode remains in the whole series at about the same frequency (1025 cm^{-1}) allow us to propose that the metal coordination does not involve the sulfur atom of the C=S bond. The rest of the absorptions are consistent with the structure of tautomer I_{Xn} . The present experimental data are insufficient to propose a structure for the AXM complexes; however, the general assignment performed suggests for the $(\text{AX})_n\text{M}$ complexes a coordination site involving the N and O atoms. No coordination water vibrations were observed in the spectra of these complexes.

CONCLUSIONS

The IR technique resulted to be appropriated to identify ligand tautomers coexisting in the solid state. The spectral assignment allows us to propose that the bismuthiol-metal complexes display a unique and similar polymeric structure involving the I_{Rn} tautomer; small quantities of the I_{Xn} tautomer remain adsorbed onto the polymer surface.

The xanthane-metal complexation stabilizes 1,1-dithiolate-type polymeric species; complexation with Cd, Co and Hg metal ions also stabilizes polymers involving the I_{Xn} tautomer. These facts seem to be related to kinetic aspects of the metal complexation

processus. Most of the new species involved in the xanthane metal-complexation were independently identified through the spectral analysis.

The identification of water vibrations in the spectra of the BM and XM complexes suggests a coordination number not less than four for the present cations.

The ensemble of results for the BM and XM complexes suggests that the spectral modifications of the CN bonds by complexation are rather due to a ring electronic energy redistribution than to a M-N coordination.

ACKNOWLEDGEMENTS

Authors are grateful to projects Fondecyt 1950397, DTI Q-3545 from the Universidad de Chile, DGI 16-9596 of the Universidad de Playa Ancha and DICYT UV-26-93 from the Universidad de Valparaiso.

REFERENCES

1. J.BEWS and C.GLIDEWELL, *J.Mol. Struct.*, **86**(1982)377
2. A.BUTLER and C.GLIDEWELL, *J.Chem.Research*, (S) 65 (M) 0801 (1982)
3. C.GLIDEWELL, J.S.MCKECHNIE and P.J.POGORZELEC, *J.Chem.Educ.*, **61**(1984)78.
4. G.D.THORN, *Can.J. Chem.*, **38**(1960)1439
5. H.J.EMELEUS, A.HAAS and N.SHEPPARD, *J. Chem. Soc.*, (1963)3165
6. "Progress in Inorganic Chemistry" vol. 27 Ed. S.J. Lippard, Wiley-Interscience (1980)
7. I.S.AHUJA and R.SINGH, *Spectrochim. Acta*, **30A**(1974)2055
8. "Infrared and Raman spectra of Inorganic and Coordination Compounds" Third Edition. K.Nakamoto, Wiley-Interscience (1978)

9. R.A.CONDRATE and K.NAKAMOTO, *J.Chem.Phys.*, **42**(1965)2590
10. G.MILLE, J.METZGER, C.POUCHAN and M.CHAILLET, *Spectrochim. Acta*, **31A**(1975)1115
11. A.C.FABRETTI, G.C.FRANCHINI and M.BELLEI, *Spectrochim. Acta*, **37A**(1981)587 and references cited therein.
12. H.A.TAJMIR-RIAHI, *Spectrochim. Acta*, **38A**(1982)1043
13. G.C.PERCY, *Spectrochim. Acta*, **32A**(1976)1287
14. S.GOU, X.YOU, Z.XU,K.YU, and Z.ZHOU, *Polyhedron*, **9**(1990)2981
15. O.SIIMANN and J.FRESCO, *Inorg. Chem.*, **8**(1969)1846
16. D.LIN-VIEN, N.B.COLTHUP, W.G.FATELEY and J.G. GRASSELLI, *The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules*, 1st De., Academic Press, Boston (1991)
17. S.P.PERLEPES, P.JACOBS, H.O.DESSEYN and J.M.TSANGARIS, *Spectrochim. Acta*, **43A**(1987)771
18. SAN LI and YING-SING LI, *Spectrochim. Acta*, **47A**(1991)201
19. G.W.WATT and B.J.McCORMICK, *Spectrochim. Acta*, **21**(1965)753
20. W.QIAN and S.KRIMM, *Biopolymers*, **32**(1992)321
21. V.M.S. GIL and N.C.OLIVEIRA, *J.Chem.Ed.*, **67**(1990)473
22. O.SIIMANN and J.FRESCO, *J.Chem.Phys.*, **54**(1971)740
23. R.K.GOEL and M.L.AGARWAL, *Spectrochim. Acta*, **38A**(1982)583
24. C.W.SCHLAPFER and K.NAKAMOTO, *Inorg. Chem.*, **14**(1975)1338
25. M.M.CAMPOS-VALLETTE, R.G.DIAZ, A.M.EDWARDS, S.KENNEDY, E.SILVA, J.DEROUAULT and M.REY-LAFON, *Vib. Spectrosc.*, **6**(1994)173
26. M.M.CAMPOS-VALLETTE, K.A.FIGUEROA, R.LATORRE, V.MANRIQUEZ, G.DIAZ, J.COSTAMAGNA and M.OTERO, *Vib. Spectrosc.*, **4**(1992)77
27. M.M.CAMPOS-VALLETTE, K.A.FIGUEROA, R.LATORRE, G.DIAZ, J.COSTAMAGNA, J.CANALES, M.REY-LAFON and J.DEROUAULT, *Vib. Spectrosc.*, **6**(1993)25

RECEIVED: October 9, 1995
ACCEPTED: November 14, 1995